PII: S0040-4020(97)00475-4

Addition of C-Nucleophiles to Carbohydrate-Derived 2,3-Dihydro-4H-pyran-4-ones: A New Entry to Thromboxane Analogues

Andreas Kirschning*, Jan Harders

Institut für Organische Chemie, Technische Universität Clausthal, Leibnizstraße 6, D-38678 Clausthal-Zellerfeld, Germany

Abstract: Nucleophilic additions of silyl- and sulfur-stabilized carbanions 5a-c to carbohydrate-derived 2,3-dihydro-4H-pyran-4-ones 4a,b are described. Depending on the combination of substituents attached to the C_1 -anion, either 1,2- or 1,4-adducts are preferentially formed. Coupling of vinyl cuprate derived from 16 with enone 4a stereoselectively afforded pyranone 17 which is a potential precursor for thromboxane analogues. © 1997 Elsevier Science Ltd.

Carbohydrate-derived 2,3-dihydro-4*H*-pyran-4-ones (hex-1-en-3-uloses) **2** comprise a relatively unexplored class of highly functionalized chiral building blocks. So far, a broad synthetic application of **2** has been hampered by their limited availability from carbohydrate sources. In context with formation of *C*-glycosides **3a**³ or branched chain sugars **3b**, however, 1,2- and 1,4-additions of *C*-nucleophiles have been studied in some detail. Furthermore, silyl and stannyl glycosides have been prepared by 1,4-addition of silyl- and stannyl anions to **2**.5 Recently, we established an efficient and straightforward access to **2** by organoiodine(III)-mediated regioselective oxidative deblocking of fully protected glycals **1** (Scheme 1). In particular, per-*O*-benzylated 2,3-dihydro-4*H*-pyran-4-ones are easily accessible now, which are ideally protected to serve as carbohydrate-derived electrophiles in reactions with complex carbanions.

We now wish to report on the reaction of 2,3-dihydro-4*H*-pyran-4-ones **4a**,**b** with carbanions **5a**-c that contain a masked formyl functionality. As is demonstrated, the combination of thio- and silyl substituents in 5 can advantageously be utilized for controlling the 1,2- vs. 1,4-selectivity (Table 1).

Thus, the lithio derivative of bis(phenylthio)trimethylsilyl methane 5a smoothly reacted with enones 4a and 4b in a 1,4-fashion to give the C-glycosides 6a, 8 and 9. For threo-configurated enone 4a stereocontrol was excellent. The isomer 6b resulting from β -attack on 5a was not observed. In contrast, the

erythro-configurated 2,3-dihydro-4H-pyran-4-ones 4b, which lacks a pseudoaxial substituent, led to a 1:1 mixture.

Table 1: Nucleophilic Addition of Carbanions 5a and 5b to 2,3-Dihydro-4H-pyran-4-ones 4a and 4b

enone	\mathbb{R}^1	R ² X		conditions	ratio ^{b)}	yield % c)(%)d)		
4a	CH ₂ OBn	Н	SiMe ₃	THF, -78°C to -60°C	6a,b >10 : 1e)	45 (92)		
4a	CH ₂ OBn	Ή	SMe	THF, -78°C to -55°C	7a,b >10:1f)	8 (88)		
4b	H	CH_3	SiMe ₃	THF, -78°C to -60°C	8a,b 1:1	67 (98)		
4b	Н	CH ₃	SMe	THF, -78°C to -55°C	9a,b 1:1g)	62 (97)		

a) carbohydrate numbering given. - b) ratios determined from the crude ¹H NMR spectra. - c) 1,4-adducts after separation of diastereoisomers by column chromatography. - d) yields of crude product. e) labile. - f) besides 7c (65%). - g) besides 9c (18%).

When 5b was coupled with 2,3-dihydro-4H-pyran-4-ones 4a,b, both 1,2-7c, 9c as well as 1,4-adducts 7a and 9a,b were formed. Deletion of one methylthio substituent, as in the lithiated bis(methylthio)methane 5c, led to exclusive 1,2-addition in good yield, which can be rationalized by the absence of steric hindrance between the carbanion and the substituents adjacent to the carbonyl group in 4a or 4b (Scheme 2). When threo-4a was employed, in all cases the pseudoaxial substituent exerted total control on the stereochemical outcome of the reaction.

Scheme 2

BnO
OBn
OBn
OCH(SMe)₂ (5c)
$$74\%$$
BnO
OCH(SMe)₂
OCH(SMe)₂
OCH(SMe)₂
 $5:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:1$
 $6:$

Adducts 6-7 were sufficiently pure for further synthetic transformations. For full characterization, the isomeric products were separated by column chromatography. While branched glycals 7c, 9c, 10 and 11 were isolated without loss of material, C-glycosides 9a,b and particularly 6a, 8a,b could only be purified with reduced yields.

The configuration of the newly formed stereogenic center at C-3 (carbohydrate numbering) in glycals 7c, 9c and 11a,b was determined by comparison of the chemical shifts of 1-H, 2-H, and the coupling constant values $J_{1,2}$ and $J_{4,5}$ in the ¹H NMR spectra with those of alkyl-branched glycals reported in the literature.^{4,7} Selected ¹H NMR data for 1,4-adducts 6a, 7a, 8a,b and 9a,b are presented in Table 2.8 From the J-values (particularly $J_{1,2a}$, $J_{1,2b}$ and $J_{4,5}$) in the ¹H NMR spectra, it can be reasoned that the bulky $C(SMe)_3$ and $C(SMe)_2SiMe_3$ group in the α -isomers 6a, 7a, 8b and 9b cause an interconversion into the alternate chair or twist-boat conformation leaving the substituents at C-1 in a pseudoequatorial position.⁹

I a	Die 2: Selected	I 'H NN	ik Da	ta of C	-Glycosic	1es 6 a	ı, 7a, 8a	a, 8b, 9	a and y	D.
	1 11 2 11-	2.116	4 11	E 11 9		7				

	I-H	2-Ha	2-Hb	4-H	5-H δ [ppm]	$J_{1,2a}$	$J_{1,2b}$	$J_{2a,2b}$	$J_{2a,4}$	$J_{4,5}$	$J_{5,6}$	$J_{5,6'}$	$J_{6,6}$ [Hz]
6a	4.77	2.93	2.67	4.09	4.38	10.6	2.8	14.0	1.0	7.0	2.0	4.4	10.8
7 a	~4.8	3.10	2.84	4.11	4.41	10.6	3.0	14.8	1.0	7.2	2.4	4.6	11.2
8a	3.89	2.93	2.77	3.64	3.52	11.2	2.4	13.2	1.2	9.2	6.0		
8Ъ	4.26	3.37	2.54	3.47	4.47	10.4	3.4	13.6	a)	3.2	7.0		
9a	3.86	3.15	2.95	3.64	3.54	11.2	2.6	14.0	1.4	9.6	6.0		
9b	4.17	3.55	2.70	3.54	4.51	10.0	3.6	14.2	a)	3.6	7.2		

a) $J_{2b.4} = 0.8 \text{ Hz}$.

As part of a program directed towards the synthesis of potential receptor level agonists/antagonists of thromboxane A_2 (TXA₂) 12, we have further examined use of 2,3-dihydro-4*H*-pyran-4-one 4a as a chiral precursor for the TXA₂-nucleus. It was anticipated, that strategies which have been developed for introducing the prostaglandine side chains into a cyclopentenone framework might be applicable to enones like 4a. ¹⁰

Scheme 3

BnO
$$A, b$$
 BnO A, b BnO A, b

a) BuLi, CuI, Et₂O, -78 °C to -40 °C; b) I BuPh₂SiCl, imidazole, DMF, π , 12h; c) Pd (10%)/C, H₂, ethyl acetate, π ; d) Dess-Martin oxidation; e) CBr₄, Zn, PPh₃, CH₂Cl₂, π , 24h, then addition of 15, π , 2h; f) n BuLi (2.2 equiv.), -78 °C, 1h, and 1.5h, then NH₄Cl_{aqu}; g) Cp₂Zr(H)Cl, THF, π , 15 min, then addition of MeLi (2 equiv.), -78 °C to -30 °C; h) CuCN, MeLi, -78 °C to -30 °C, then addition of 4a, -78 °C to -50 °C.

The side chain 16 was constructed as described in Scheme $3.^{11}$ (R)-Glycidol 13 was regionselectively opened with the reagent system n-BuLi / CuI followed by protection of the hydroxy group to afford benzyl ether 14 in 91% yield. Debenzylation and Dess-Martin periodinane-promoted oxidation 12 quantitatively yielded aldehyde 15 which was directly transformed into alkyne 16. 13 Finally, hydrozirconization (1 equiv. Cp₂Zr(H)Cl, rt, 15 min) of 16, activation (2 equiv. MeLi) followed by addition of CuCN (1 equiv.) and MeLi (1 equiv.) gave a solution of the corresponding (E)-vinyl cuprate which was directly coupled with 4a in THF. 10 Pyran-4-one 17 was isolated as the only isomer indicating that the coupling had proceeded, as expected, in a highly stereoselective manner.

EXPERIMENTAL

General information. All temperatures quoted are uncorrected. Optical rotations were measured in a Perkin-Elmer 141 polarimeter. Infrared spectra (IR) were obtained using a Perkin-Elmer 399 spectrophotometer and wavelengths (v) are reported in cm⁻¹. ¹H NMR and ¹³C NMR spectra were recorded on Bruker DPX 200 or ARX 400 spectrometer, respectively. ⁹ Secondary carbons are marked (-), primary as well as tetriary (+) and quaternary (o). Tetramethylsilane (TMS) was used as internal standard. Mass spectra (MS) were obtained using Finnigan MAT 95 spectrometer. Elemental analyses were carried out by the Institut für Pharmazeutische Chemie, Technische Universität Braunschweig. All solvents used were reagent grade and were further dried. Reactions were monitored by TLC on silica gel 60 PF²⁵⁴ (E. Merck, Darmstadt) and detected by UV absorption and either by charring with 5% H₂SO₄ in ethanol or with a mixture of H₂SO₄, AcOH and 4-methoxy benzaldehyde in methanol. Preparative column chromatography (cc) and flash chromatography (fc) were performed on silica gel 60 (E. Merck, Darmstadt). 2,3-Dihydro-4*H*-pyran-4-ones 4a and 4b were prepared according to the literature. ⁶ 13 was synthesized as previously described. ¹⁴

General Procedure for the Nucleophilic Addition of Carbanions 5a and 5c to 2,3-Dihydro-4H-pyran-4-ones 4a,b

A solution of 1.1 equiv. of dithioacetals **5a** or **5c** in dry THF (1 mL/mmol) was cooled to -78 °C. Then *n*-BuLi (1.6 M solution in hexane; 1.1 equiv.) was added and the solution was allowed to warm to -10 °C within 1 h. This temperature was maintained for 1 h and the mixture was cooled again to -78 °C. To this solution one equiv. of 2,3-dihydro-4*H*-pyran-4-one **4a** or **4b** in dry THF (2 mL/mmol) was added dropwise. The yellow reaction mixture was allowed to warm to -40 °C and kept at this temperature until no starting material could be detected by TLC (PE/EE 3:1). For workup, it was hydrolyzed with a mixture of dichloromethane/saturated NH₄Cl solution (1:1). The aqueous phase was separated and extracted twice with dichloromethane. The combined organic layers were dried (MgSO₄), concentrated *in vacuo* and purified by cc.

Reaction of 4a (0.2 g, 0.92 mmol) with 5a gave 1,5-Anhydro-4,6-bis-O-benzyl-1-C-[1,1-bis(methylthio)-1-trimethylsilylmethyl]-2-deoxy-D-lyxo-hex-3-ulose (6a) as a single isomer (426 mg, 92 %). Purification by fc using PE/EE (15:1) afforded a colorless oil (209 mg, 45 %). $[\alpha]^{20}_D$ -32.8° (c 1.02,

CHCl₃). ¹H NMR (CDCl₃): δ 7.36-7.25 (m, 10H, H aromatic), 4.97, 4.57, 4.54, 4.41 (4d, 4H, J= 12 Hz, 2x CH₂Ph), 4.77 (dd, 1H, 1-H), 4.38 (ddd, 1H, 5-H), 4.09 (dd, 1H, 4-H), 3.80 (dd, 1H, 6-H), 3.75 (dd, 1H, 6'-H), 2.93 (ddd, 1H, 2-Ha), 2.67 (dd, 1H, 2-Hb), 2.13, 2.11 (2s, 6H, 2x SMe), 0.20 (s, 9H, Si(CH₃)₃). Coupling constants J are listed in Table 2. ¹³C NMR (CDCl₃): δ 204.7 (o, C-3), 137.8, 137.7 (o, aromat. C), 128.6 - 127.6 (+, aromat. C), 79.8, 78.9, 76.5 (+, C-1, C-4, C-5), 73.8, 72.9 (-, Ph-CH₂), 69.0 (-, C-6), 49.8 (o, C(SMe)₂SiMe₃), 44.4 (-, C-2), 13.3, 13.1 (+, (SMe)₂), 0.1 (+, SiMe₃). C₂₆H₃₆O₄S₂Si: (504.79): calcd. C 61.87, H 7.19, S 12.70; found: C 61.92, H 7.28, S 12.30.

Reaction of 4b (0.48 g, 1.47 mmol) with 5a gave 1,5-Anhydro-4-O-benzyl-1-C-[1,1bis(methylthio)-1-trimethylsilylmethyll-2.6-dideoxy-L-arabino-hex-3-ulose (8a) and 1,5-Anhydro-4-Obenzyl-1-C-[1,1-bis(methylthio)-1-trimethylsilylmethyl]-2,6-dideoxy-L-ribo-hex-3-ulose (8b) (1:1) (574 mg, 98 %). Purification by cc using PE/EE (30:1) gave two fractions (392 mg, 67 %). 1st Fraction: 8a; colorless oil. $[\alpha]^{21}_{D}$ -124.4° (c 1.52, CHCl₃). ¹H NMR (CDCl₃): δ 7.39-7.25 (m, 5H, H aromatic), 4.96, 4.50 (2d, 2H, J = 11.6 Hz, CH₂Ph), 3.89 (dd, 1H, 1-H), 3.64 (dd, 1H, 4-H), 3.52 (dq, 1H, 5-H), 2.93 (ddd, 1H, 2-Ha), 2.77 (dd, 1H, 2-Hb), 2.14, 2.13 (2s, 6H, 2x SMe), 1.38 (d, 3H, 6-H), 0.22 (s, 9H, Si(CH₃)₃). Coupling constants J are listed in Table 2. 13 C NMR (CDCl₃): δ 206.2 (o, C-3), 137.4 (o, aromat. C), 128.4, 128.3, 128.0 (+, aromat. C), 84.5 (+, C-4), 83.8 (+, C-1), 77.1 (+, C-5), 73.3 (-, Ph-CH₂), 49.2 (o, C(SMe)₂SiMe₃), 45.2 (-, C-2), 19.1 (+, C-6), 13.4, 12.8 (+, (SMe)₂), -0.2 (+, SiMe₃). C₁₉H₃₀O₃S₂Si: (398.66): calcd. C 57.24, H 7.58, S 16.09; found: C 57.24, H 7.67, S 15.40. 2nd Fraction: **8b** (contaminated with ~10 % of **8a**); colorless oil. ¹H NMR (CDCl₃): δ 7.39-7.25 (m, 5H. H aromatic), 4.47 (dq, 1H, 5-H), 4.65, 4.45 (2d, 2H, J= 11.6 Hz, CH₂Ph), 4.26 (dd, 1H, 1-H), 3.47 (dd, 1H, 4-H), 3.37 (dd, 1H, 2-Ha), 2.54 (ddd, 1H, 2-Hb), 2.17, 2.15 (2s, 6H, 2x SMe), 1.19 (d, 3H, 6-H), 0.25 (s, 9H, Si(CH₃)₃). Coupling constants J are listed in Table 2. 13 C NMR (CDCl₃): 208.2 (o, C-3). 137.1 (o, aromat. C), 128.4 - 128.0 (+, aromat. C), 83.5 (+, C-4), 77.9 (+, C-1), 74.3 (+, C-5), 71.9 (-, $Ph-CH_2$), 50.1 (o, $C(SMe)_2SiMe_3$), 42.8 (-, C-2), 15.4 (+, C-6), 13.2, 12.7 (+, $(SMe)_2$), 0.1 (+, $SiMe_3$). LRMS (DCI): m/z (relative intensity) $2M+NH_4^+$ 814.8 (13.6), $M+NH_4^+$ 416.4 (96), $M+H^+$ 399.4 (100), M-SCH₃⁺ 351.3 (53). C₁₉H₃₀O₃S₂Si: (398.66): calcd. C 57.24, H 7.58, S 16.09; found: C 57.25, H 7.60, S 15.49

Reaction of **4a** (250 mg, 0.77 mmol) with **5c** gave **1,5-Anhydro-4,6-bis-O-benzyl-3-C-[1,1-bis(methylthio)]-2-deoxy-D-Iyxo-hex-1-enitol (10)** as a single isomer. Purification by fc using PE/EE (15:1) yielded a colorless oil (247 mg, 74 %). 1 H NMR (CDCl₃): δ 7.38-7.25 (m, 10H, H aromatic). 6.38 (d, 1H, $J_{1,2}$ = 6.0 Hz, 1-H), 4.95 (dd, 1H, $J_{2,1}$ = 6.0 Hz, $J_{2,4}$ = 1.6 Hz, 2-H), 4.71, 4.67, 4.57, 4.46 (4d, 4H, J= 12 Hz, 2x CH₂Ph), 4.42 (dd, $J_{4,5}$ = 2.6 Hz, $J_{4,2}$ = 1.6 Hz, 1H, 4-H), 4.18 (ddd, 1H, $J_{5,6}$ = 7.0 Hz, $J_{5,6}$ = 5.0 Hz, $J_{5,4}$ = 2.6 Hz, 5-H), 3.77 (dd, $J_{6,6}$ = 10.0 Hz, $J_{6,5}$ = 7.0 Hz, 1H, 6-H), 3.59 (dd, $J_{6,6}$ = 10.0 Hz, $J_{6,5}$ = 5.0 Hz, 1H, 6'-H), 3.59 (s, 1H, CH(SMe)₂), 2.79 (s, 1H, OH), 2.20, 2.19 (2s, 6H, 2x SMe). Coupling constants J are listed in Table 2. 13 C NMR (CDCl₃): δ 143.9 (+, C-1), 137.8, 137.3 (o, aromat. C), 128.7 - 127.7 (+, aromat. C), 105.2 (+, C-2), 74.8, 73.5 (-, Ph-CH₂), 74.8 (+, C-5), 74.4 (+, C-4), 73.2 (o, C-3), 68.5 (-, C-6), 64.7 (+, CH(SMe)₂), 15.3, 15.2 (+, (SMe)₂). C_{23} H₂₈O₄S₂: (432.60): calcd. C 63.86, H 6.52, S 14.82; found: C 63.81, H 6.89, S 14.36.

Reaction of 4b (0.2 g, 0.92 mmol) with 5c gave 1,5-Anhydro-4-O-benzyl-3-C-[1,1-bis(methylthio)]-2,6-dideoxy-L-arabino-hex-1-enitol (11a) and 1,5-Anhydro-4-O-benzyl-3-C-[1,1-bis(methylthio)]-2,6-dideoxy-L-ribo-hex-1-enitol (11b) (5:1) (306 mg crude). Purification by cc using PE/EE (15:1) gave two fractions (255 mg, 85 %).

1st Fraction: 11b; colorless oil. 1 H NMR (CDCl₃): δ 7.38-7.25 (m, 5H, H aromatic), 6.35 (d, 1H, $J_{1,2}$ = 6.2 Hz, 1-H), 4.89, 4.73 (2d, 2H, J= 11.2 Hz, CH₂Ph), 4.69 (dq, 1H, $J_{5,4}$ = 9.2 Hz, $J_{5,6}$ = 6.4 Hz 5-H), 4.66 (d, 1H, $J_{2,1}$ = 6.2 Hz 2-H), 4.15 (s, 1H, OH), 3.73 (d, 1H, $J_{4,5}$ = 9.2 Hz, 4-H), 3.36 (s, 1H, CH(SMe)₂), 2.23, 2.20 (2s, 6H, 2x SMe), 1.33 (d, 3H, $J_{5,6}$ = 6.0 Hz, 6-H). 13 C NMR (CDCl₃): δ 144.9 (+, C-1), 138.1 (o, aromat. C), 128.4, 128.0, 127.8 (+, aromat. C), 102.2 (+, C-2), 82.5 (+, C-4), 74.8 (-, Ph-CH₂), 74.3 (o, C-3), 73.0 (+, C-5), 63.1 (+, CH(SMe)₂), 18.4 (+, C-6), 15.8, 14.9 (+, (SMe)₂). LRMS (DCI) for C₁₆H₂₂O₃S₂ (326.48): m/z (relative intensity) M+NH₄+ 344.3 (11), M+H⁺ 327.3 (12), M-OH⁺ 309.3 (100).

2nd Fraction: **11a**; colorless oil. ¹H NMR (CDCl₃): δ 7.40-7.30 (m, 5H, H aromatic), 6.44 (d, 1H, $J_{1,2}$ = 6.0 Hz, 1-H), 4.86 (d, 1H, $J_{2,1}$ = 6.0 Hz 2-H), 4.83, 4.73 (2d, 2H, J= 11.0 Hz, CH₂Ph), 4.15 (dq, 1H, $J_{5,4}$ = 10.0 Hz, $J_{5,6}$ = 6.0 Hz 5-H), 4.09 (d, 1H, $J_{4,5}$ = 10.0 Hz, 4-H), 3.66 (s, 1H, OH), 3.20 (s, 1H, CH(SMe)₂), 2.23, 2.11 (2s, 6H, 2x SMe), 1.43 (d, 3H, $J_{6,5}$ = 6.0 Hz, 6-H). ¹³C NMR (CDCl₃): δ 147.3 (+, C-1), 137.6 (o, aromat. C), 128.5, 128.1, 128.0 (+, aromat. C), 101.7 (+, C-2), 79.9 (+, C-4), 75.2 (-, Ph-CH₂), 73.4 (o, C-3), 71.4 (+, C-5), 63.8 (+, CH(SMe)₂), 17.6 (+, (SMe)₂), 15.3 (+, C-6). LRMS (EI) for C₁₆H₂₂O₃S₂ (326.48): m/z (relative intensity) M-OH⁺ 309.3 (34). C₁₆H₂₂O₃S₂: (326.48): calcd. C 58.86, H 6.79, S 19.64; found: C 59.18, H 6.35, S 19.53.

General Procedure for the Nucleophilic Addition of Carbanion 5b to 2,3-Dihydro-4H-pyran-4-ones 4a,b

A solution of 1.2 equiv. of tris(methylthio)methane (**5b**) in dry THF (1 mL/mmol) was cooled to -78 °C. Then *n*-BuLi (1.6 M solution in hexane; 1.1 equiv.) was added and the solution was allowed to warm to -60 °C within 30 min. This temperature was maintained for 30 min and the mixture was cooled again to -78 °C. To this solution one equiv. of 2,3-dihydro-4*H*-pyran-4-one **4a** or **4b** in dry THF (2 mL/mmol) was added dropwise. The yellow reaction mixture was allowed to warm to -50 °C and kept at this temperature for 1h until no starting material could be detected by TLC (PE/EE 3:1). For workup, it was hydrolyzed with a mixture of dichloromethane/saturated NH₄Cl solution (1:1). The aqueous phase was separated and extracted twice with dichloromethane. The combined organic layers were dried (MgSO₄), concentrated *in vacuo* and purified by cc.

Reaction of **4a** (250 mg, 0.77 mmol) with **5b** gave **1,5-Anhydro-4,6-bis-***O*-benzyl-2-deoxy-1-*C*-[1,1,1-tris(methylthio)methyl]-D-*lyxo*-hex-3-ulose (**7a**) and **1,5-Anhydro-4,6-bis-***O*-benzyl-2-deoxy-3-*C*-[1,1,1-tris(methylthio)methyl]-D-*lyxo*-hex-1-enitol (**7c**) (8:1) (325 mg, 88 %). Purification by cc using PE/EE (15:1) gave two fractions (269 mg, 73 %).

1st Fraction: 7c; colorless oil. $[\alpha]^{21}_D$ -17.3° (c 1.32, CHCl₃); ¹H NMR (CDCl₃): δ 7.38-7.25 (m, 10H, H aromatic), 6.46 (d, 1H, $J_{1,2}$ = 6.2 Hz, 1-H), 5.21 (dd, 1H, $J_{1,2}$ = 6.2 Hz, $J_{2,4}$ = 1.0 Hz, 2-H), 4.81 (ddd, 1H, $J_{5,6}$ = 7.4 Hz, $J_{5,6}$ = 4.4 Hz, $J_{5,4}$ = 2.6 Hz, 5-H), 4.81, 4.61, 4.53, 4.46 (4d, 4H, J= 11.2 and 12.0

Hz, $2x \text{ CH}_2\text{Ph}$), 4.45 (dd, $J_{4,5} = 2.6 \text{ Hz}$, $J_{4,2} = 1.0 \text{ Hz}$, 1H, 4-H), 3.75 (dd, 1H, $J_{6',6} = 10.2 \text{ Hz}$, $J_{6',5} = 7.4 \text{ Hz}$, 6'-H), 3.53 (dd, $J_{6,6'} = 10.2 \text{ Hz}$, $J_{6,5} = 4.4 \text{ Hz}$, 1H, 6-H), 3.15 (s, 1H, 0H), 2.28 (s, 9H, 3x SMe). ^{13}C NMR (CDCl₃): 8 144.7 (+, C-1), 137.9, 137.1 (o, aromat. C), 128.7 - 127.5 (+, aromat. C), 105.5 (+, C-2), 77.3 (o, C-3), 76.9, 75.0 (+, C-4, C-5), 74.6, 73.4 (-, Ph-CH₂), 68.9 (-, C-6), 53.4 (o, $C(\text{SMe})_3$), 15.4 (+, (SMe)₃). LRMS (DCl) for $C_{24}H_{30}O_4S_3$ (478.70): m/z (relative intensity) M+NH₄+ 496.5 (46). 2^{nd} fraction: 7a (contaminated with $^{7}70$ % of 7c). ^{1}H NMR (CDCl₃): 8 7.36-7.25 (m, 10H, H aromatic), 5.0, 4.57, 4.54, 4.44 (4d, 4H, J = 12 Hz, $2x \text{ CH}_2\text{Ph}$), 4.41 (dd, 5-H), 4.11 (dd, 1H, 4-H), 3.78 (dd, 1H, 6'-H), 3.53 (dd, 1H, 6-H), 3.10 (ddd, 1H, 2-Ha), 2.84 (dd, 1H, 2-Hb), 2.14 (s, 9H, 3x SMe). Due to overlap with 5-H and $CH_2\text{Ph}$ of 7c, 1-H could not be detected. Selected ^{13}C NMR data: 8 204.4 (C-3), 79.4, 78.9, 77.2 (C-1, C-4, C-5), 73.7, 72.9 (2x CH₂Ph), 68.7 (C-6), 43.4 (C-2), 13.9 (Sme).

Reaction of **4b** (0.2 g, 0.92 mmol) with **5b** gave 1,5-Anhydro-4-*O*-benzyl-2,6-dideoxy-1-*C*-[1,1,1-tris(methylthio)methyl]-L-*arabino*-hex-3-ulose (9a), 1,5-Anhydro-4-*O*-benzyl-2,6-dideoxy-1-*C*-[1,1,1-tris(methylthio)methyl]-L-*ribo*-hex-3-ulose (9b) and 1,5-Anhydro-4-*O*-benzyl-2,6-dideoxy-3-*C*-[1,1,1-tris(methylthio)methyl]-L-*arabino*-hex-1-enitol (9c) (~2:2:1) (332 mg, 97 %). Purification by cc using PE/EE (15:1) gave three fractions (274 mg, 80 %).

1st Fraction: 9c; colorless oil. [α]¹⁹_D -90.5° (c 0.63, CHCl₃). ¹H NMR (CDCl₃): δ 7.40-7.25 (m, 5H, H aromatic), 6.53 (d, 1H, $J_{1,2}$ = 6.0 Hz, 1-H), 5.68 (d, 1H, $J_{2,1}$ = 6.0 Hz, 2-H), 5.26, 4.67 (2d, 2H, J= 10.6 Hz, CH₂Ph), 4.37 (d, 1H, $J_{4,5}$ = 10.0 Hz, 4-H), 3.97 (dq, 1H, $J_{5,4}$ = 10.0 Hz, $J_{5,6}$ = 6.2 Hz, 5-H), 3.56 (s, 1H, OH), 2.28 (s, 9H, 3x SMe), 1.50 (d, 3H, $J_{6,5}$ = 6.2 Hz,6-H). ¹³C NMR (CDCl₃): δ 147.1 (+, C-1), 137.9 (o, aromat. C), 127.5 - 128.4 (+, aromat. C), 104.7 (+, C-2), 79.6 (+, C-4), 79.2 (o, C-3), 76.7 (o, C(SMe)₃), 73.3 (-, Ph-CH₂), 72.4 (+, C-5), 17.8 (+, C-6), 15.9 (+, (SMe)₃). LRMS (DCl) for C₁₇H₂₄O₃S₃ (372.57): m/z (relative intensity) 2M+NH₄+ 762.7 (2.4), M+NH₄+ 390.4 (36), M+H⁺ 390.4 (36), M-OH⁺ 355.3 (100), M-SCH₃+ 325.3 (56).

2nd Fraction: **9a**; colorless oil; $[α]^{20}_D$ -109.4° (c 0.76, CHCl₃); ¹H NMR (CDCl₃): δ 7.40-7.28 (m, 5H, H aromatic), 4.97, 4.51 (2d, 2H, J= 11.4 Hz, CH₂Ph), 3.86 (dd, 1H, 1-H), 3.64 (dd, 1H, 4-H), 3.54 (dq, 1H, 5-H), 3.15 (ddd, 1H, 2-Ha), 2.95 (dd, 1H, 2-Hb), 2.18 (s, 9H, 3x SMe), 1.38 (d, 3H, 6-H). Coupling constants J are listed in Table 2. ¹³C NMR (CDCl₃): δ 206.2 (o, C-3), 137.4 (o, aromat. C), 128.4, 128.2, 128.0 (+, aromat. C), 84.6 (+, C-4), 83.4 (+, C-1), 77.3 (+, C-5), 73.3 (-, Ph-CH₂), 72.9 (o, C'(SMe)₃), 44.9 (-, C-2), 19.3 (+, C-6), 14.1 (+, (SMe)₃). LRMS (DCI): m/z (relative intensity) 2M+NH₄+762.7 (5.6), M+NH₄+390.3 (100), M+H⁺373 (96). C_{17} H₂₄O₃S₃ (372.57): calcd. C 54.81, H 6.49, S 25.82; found: C 55.87, H 6.41, S 22.73.

3rd Fraction: **9b**; colorless oil. $[\alpha]^{20}_D$ -25.8° (c 1.14, CHCl₃). ¹H NMR (CDCl₃): δ 7.38-7.26 (m, 5H, H aromatic), 4.66, 4.47 (2d, 2H, J= 11.6 Hz, CH₂Ph), 4.51 (dq, 1H, 5-H), 4.17 (dd, 1H, 1-H), 3.55 (dd, 1H, 2-Ha), 3.54 (dd, 1H, 4-H), 2.70 (ddd, 1H, 2-Hb), 2.21 (s, 9H, 3x SMe), 1.19 (d, 3H, 6-H). Coupling constants J are listed in Table 2. ¹³C NMR (CDCl₃): δ 207.6 (o, C-3), 137.1 (o, aromat. C), 128.4, 127.9, 127.6 (+, aromat. C), 83.2 (+, C-4), 77.2 (+, C-1), 74.2 (+, C-5), 73.7 (o, C(SMe)₃), 71.9 (-, Ph-CH₂), 41.6 (-, C-2), 15.2 (+, C-6), 13.9 (+, (SMe)₃). LRMS (DCl) for C₁₇H₂₄O₃S₃ (372.57): m/z (relative intensity) 2M+NH₄+ 762.7 (8), M+NH₄+ 390.3 (100).

1-O-Benzyloxy-2-O-tert-butyldiphenylsilyloxy-heptane (14)

A suspension of CuI (2.77 g, 14.5 mmol) in dry diethyl ether (25 mL) was cooled to -50 °C. Then 2.5 equiv. of n-BuLi (1.6 M solution in hexane; 19.0 mL, 30.3 mmol) were added and the solution was allowed to warm to -10 °C. The reaction mixture was cooled to -78 °C, treated with glycidol 13 (2 g, 12.1 mmol) in dry diethyl ether (12 mL) and slowly warmed to -40 °C. For workup, it was hydrolyzed with a mixture of dichloromethane/saturated NH₄Cl solution (1:1). For removal of copper salts, a few drops ammonia were added and the two layers were rapidly stirred under air. The aqueous phase was separated and extracted twice with dichloromethane. The combined organic layers were dried (MgSO₄), concentrated in vacuo and the crude semisolid product was partially purified by fc using PE/EE (30:1) as eluent. The crude material (2.7 g) and imidazole (1.3 g, 18.2 mmol) were dissolved in dry DMF (25 mL) at 0 °C and tert-butyldiphenylsilyl chloride (3.66 g, 13.3 mmol) was added. The reaction mixture was stirred at room temperature for 12 h. For workup, it was hydrolyzed with a mixture of PE/saturated NH₄Cl solution (1:1). The aqueous phase was separated and exhaustively extracted with PE. The combined organic layers were dried (MgSO₄), concentrated in vacuo and the crude product was purified by fc using PE/EE (50:1) as eluent to afford 14 (5.07 g, 91 %) as a colorless oil. ^{1}H NMR (CDCl₃): δ 7.65-7.55 and 7.37-7.06 (2m, 15H, H aromatic), 4.27, 4.23 (2d, 2H, $J_{AB} = 11.0$ Hz, CH_2Ph), 3.80 (dddd, 1H, J = 11.0, 5.5, 5.0, 0.4 Hz, CHOSi), 3.32 (dd, 1H, J = 9.6, 5.0 Hz, HCHOBn), 3.28 (dd, 1H, J = 9.6, 5.5 Hz, HCHOBn), 1.49-1.34 and 1.25-1.0 (2m, 8H, 4x CH₂), 0.97 (s, 9H, 'Bu), 0.75 (t, 3H, J = 7.2 Hz, CH₂CH₃). ¹³C NMR (CDCl₃); δ 138.5, 134.6, 134.2 (o, aromat. C), 136.0, 129.5, 129.3, 128.2, 127.6, 127.4, 127.3 (+, aromat. C), 74.0, 73.0 (-, PhCH₂OCH₂), 72.3 (+, CHOSi), 34.3 (-, CH₂(CH₂)₃CH₃), 31.9 (-, CH₂CH₂(CH₂)₂CH₃), 27.0 (-, ^tBu), 24.4 (+, (CH₂)₂CH₂CH₂CH₃), 22.5 (-, (CH₂)₃CH₂CH₃), 19.4 (o, ^tBu), 14.0 (+, CH₃).

3-tert-Butyldiphenylsiloxy-oct-1-yne (16)

A suspension of palladium on charcoal (10% Pd, 250 mg) in ethyl acetate (15 mL) was activated under an H₂-atmosphere. 14 (2.5 g, 5.43 mmol) was added and the reaction mixture was stirred for 12 h at room temperature For workup, it was filtered through a pad of Celite, concentrated in vacuo and purified by fc using PE/EE (10:1) as eluent to afford a colorless oil (1.85 g, 5.0 mmol, 92 %). To a solution of the alcohol thus obtained (0.5 g, 1.35 mmol) in dry dichloromethane (5 mL) was added the Dess-Martin reagent 13 (0.74 g, 1.75 mmol) in dry dichloromethane (5 mL) and the mixture was stirred at room temperature for 10 min. For workup, it was hydrolyzed with a mixture of dichloromethane/saturated NaHCO₃-solution (1:1). The aqueous phase was separated and extracted with dichloromethane (2x). The combined organic layers were dried (MgSO₄) and concentrated in vacuo to afford 15. This aldehyde was dissolved in dichloromethane (2 mL) and directly added to a suspension, which had been prepared as follows: A cold (0 °C) suspension of CBr₄ (0.96 g, 2.9 mmol) and Zn (0.19 g, 2.9 mmol) in dichloromethane (3 mL) and was treated with triphenylphosphine (0.76 g, 2.9 mmol) in dichloromethane (3 mL) and stirred for 24 h in the dark. The crude aldehyde 15 was added and the mixture was stirred for 2 h at 0 °C, poured into PE (20 mL), filtered, and the filtrate was concentrated under reduced pressure. The residue was diluted with PE (10 mL); triphenylphospine oxide was removed by filtration and washed with PE. This procedure was repeated until no more 1,1 dibromo olefin was detected by TLC (PE/ EE 50:1). The filtrates and washings were concentrated in vacuo to give a yellow oil (0.18 g, 0.34 mmol, 25 %). To a cold solution (-78 °C) of 1,1 dibromo olefin (0.18 g, 0.34 mmol) in THF (3 mL), n-BuLi ((1.6 M solution in hexane; 0.47 mL, 0.75 mmol, 2.2 equiv.) was added and the mixture was allowed to warm -30 °C and kept at this temperature for 1h until no starting material could be detected by TLC (PE/EE 50:1). For workup, it was hydrolyzed with a mixture of dichloromethane/saturated NH₄Cl-solution (1:1). The aqueous phase was separated and extracted twice with dichloromethane. The combined organic layers were dried (MgSO₄), concentrated *in vacuo* and purified by cc to afford 16 (85 mg, 0.24 mmol, 71 % from 1,1 dibromo olefin) as a colorless oil. [α]²⁰_D -0.08° (c 1.47, CHCl₃). IR v 3309. ¹H NMR (CDCl₃): δ 7.80-7.64 and 7.48-7.32 (2m, 10H, H aromatic), 4.33 (ddd, 1H, J= 6.8, 5.8, 2.0 Hz, CHOSi), 2.30 (d, 1H, J= 2.0 Hz, H alkyne), 1.73-1.12 (4m, 8H, 4x CH₂), 1.08 (s, 9H, 'Bu), 0.84 (t, 3H, J= 7.0 Hz, CH₂CH₃). ¹³C NMR (CDCl₃): δ 136.0, 135.8, 129.7, 129.6, 127.6, 127.4 (+, aromat. C), 133.6, 133.5 (o, aromat. C), 85.2 (+, HCC), 72.5 (o, HC), 63.7 (+, CHOSi), 38.2 (-, CH₂(CH₂)₃CH₃), 31.3 (-, CH₂CH₂(CH₂)₂CH₃), 26.9 (+, ¹Bu), 24.3 (-, (CH₂)₂C'H₂CH₂CH₃), 22.5 (-, (CH₂)₃CH₂CH₃), 19.3 (o, ¹Bu), 14.0 (+, CH₃).

(E)-(2R, 3S, 3'S)-3-Benzyloxy-2-(benzyloxymethyl)-6-[3-(tert-butyldiphenylsiloxy)-oct-1-enyl) tetrahydro-pyran-4-one (17)

A solution of 16 (80 mg, 0.22 mmol) and Cp₂Zr(H)Cl (57 mg, 0.22 mmol) in dry THF (2 mL) was stirred for 15 min at room temperature The reaction mixture was cooled to -78 °C, treated with 2 equiv. methyl lithium (0.28 mL, 0.44 mmol, 1.6 M in diethyl ether) and allowed to warm to -30 °C. This temperature was maintained for 30 min. and the mixture was cooled again to -78 °C, CuCN (20 mg, 0.22 mmol) and methyl lithium (0.14 mL, 0.22 mmol, 1.6 M in diethyl ether) were added and the temperature was raised to -30 °C. This temperature was maintained for 30 min and the mixture was cooled again to -78 °C. 4a (71 mg, 0.22 mmol) was added and the reaction mixture was slowly raised to -50 °C. For workup, it was hydrolyzed with a mixture of dichloromethane/saturated NH₄Cl-solution (1:1). The aqueous phase was separated and extracted twice with dichloromethane. The combined organic layers were dried (MgSO₄), concentrated in vacuo and purified by cc using PE/EE (50:1) as eluent to afford 17 (62 mg, 0.09 mmol, 41 %). $[\alpha]\Theta_{243.4\text{nm}} = +1040^{\circ}, \Theta_{295.2\text{nm}} = -2500^{\circ}, \Theta_{354.4\text{nm}} = +323^{\circ} \text{ (c 0.053 mM, MeOH, 25°C)}.$ ¹H NMR (CDCl₃): δ 7.89-7.72 and 7.33-7.07 (20H, Ph), 5.77 (ddd, 1H, 2'-H), 5.47 (ddd, 1H, 1'-H), 4.84, 2x 4.36, 4.26 (4d, 4H, $J_{A,B}$ = 12.0 Hz, 2x CH₂Ph), 4.76 (dddd, 1H, 6-H), 4.29 (ddd, 1H, 2-H), 4.25 (dd, 1H, 3'-H), 3.82 (dd, 1H, 3-H), 3.77 (dd, $J_{A,B}$ = 10.7 Hz, 1H, HCHOBn), 3.69 (dd, $J_{A,B}$ = 10.7 Hz, 1H, HCHOBn), 2.56 (dd, 1H, 5-H_a), 2.04 (ddd, 1H, 5-H_b), 1.67-1.49 and 1.36-1.13 [2m, 8H, $(CH_2)_4$, 1.24 (s, 9H, ^tBu), 0.86 (t, 1H, CH₃). - $J_{2,HCH}$ = 5.3, $J_{2,HCH}$ = 3.2, $J_{2,3}$ = 5.7, $J_{3,5b}$ = 1.1, $J_{5a,5b} = 14.0, J_{5a,6} = 14.2, J_{5b,6} = 8.5, J_{6,1} = 5.0, J_{6,2} = 1.5, J_{1,1,2} = 15.6, J_{1,1,3} = 1.0, J_{2,1,3} = 6.8$ Hz, $J_{3^{\prime},4^{\prime}} = 6.8$ Hz, $J_{3^{\prime},4^{\prime\prime}} = 1.0$ Hz, $J_{7^{\prime},\text{Me}} = 7.0$ Hz. ¹³C NMR (CDCl₃): δ 203.5 (o, C-3), 138.7, 138.4, 135.9 (o, aromat. C), 136.5 – 129.8 (+, aromat. C, C-1', C-2'), 79.8 (+, C-5), 76.4 (+, C-4), 74.3, 73.2 (+, C-1,C-3'), 73.7, 72.7 $(-,PhCH_2)$, 69.5 (-, C-6), 45.8 (-, C-2), 38.2 $(-, C'H_2(CH_2)_3CH_3)$, 32.1 $(-, C'H_2(CH_2)_3CH_3)$ $CH_2CH_2(CH_2)_2CH_3$), 27.3 (+, tBu), 24.7 (-, $(CH_2)_2CH_2CH_2CH_3$), 22.9 (-, $(CH_2)_3CH_2CH_3$), 19.6 (o, tBu), 14.3 (+, CH₃). LRMS (DCI): m/z M+NH₄+ 708.6.

Acknowledgement: We thank Dr. W. Skuballa (Schering AG, Berlin) for helpful discussions. Financial support by the Deutsche Forschungsgemeinschaft (grant Ki 397/4-1) and the Fonds der Chemischen Industrie is gratefully acknowledged.

REFERENCES AND NOTES

- Reviews: (a) Holder, N. L., Chem. Rev. 1982, 82, 287-332. (b) Lichtenthaler, F. W., In Modern Synthetic Methods; Scheffold, R., Ed.; VHCA: Berlin, Heidelberg, 1992; Vol. 6.
- (a) Bellosta, V.; Benhaddou, R.; Czernecki, S., Synlett 1993, 861-863. (b) Czernecki, S.;
 Vijayakumaran, K.; Ville, G., J. Org. Chem. 1986, 51, 5472-5475.- (c) Fraser-Reid, B.; Walker,
 D. L.; Tam, S. Y.-K.; Holder, N. L., Can. J. Chem. 1973, 51, 3950-3954.
- (a) Hale, K. J.; Manaviazar, S., Tetrahedron Lett. 1994, 35, 8873-8876. (b) Goodwin, T. E.; Rothman, N. M.; Salazar, K. L; Sorrels, S. L., J. Org. Chem. 1992, 57, 2469-2471. (c) Czernecki, S.; Leteux, C.; Veyrières, A., Tetrahedron Lett. 1992, 33, 221-224. d) Benhaddou, R.; Czernecki, S.; Ville, G., J. Org. Chem. 1992, 57, 4612-4616. (e) Bellosta V.; Czernecki, S., Carbohydr. Res. 1987, 171, 279-288. (f) Goodwin, T. E.; Crowder, C. M.; White, R. B.; Swanson, J. S.; Evans, F. E.; Meyer, W. L., J. Org. Chem. 1983, 48, 376-380. (g) Paulsen, H.; Bünsch, H., Chem. Ber. 1978, 111, 3484-3496.
- (a) Takiya, M.; Ishii, M.; Shibata, K.; Mikami, Y.; Mitsunobu, O., Chem. Lett. 1991, 11, 1917-1920. (b) Kaufmann, T.; Klaffke, W.; Philip, C.; Thiem, J., Carbohydr. Res. 1990, 207, 33-38. (c) Dawe, R. D.; Fraser-Reid, B., J. Carbohydr. Chem. 1982, 1, 21-35. (d) Thiem, J.; Elvers J., Chem. Ber. 1979, 112, 818-822.
- 5 Kirschning A.; Harders, J., Synlett 1996, 772-774.
- 6 (a) Kirschning, A., J. Org. Chem. 1995, 60, 1228-1232. (b) Kirschning, A., Liebigs Ann. Chem. 1995, 2053-2056. (c) Kirschning, A.; Dräger; G., Harders, J., Synlett 1993, 289-290.
- We also prepared the methyl-branched derivatives by reaction of **4a** and **4b**, respectively, with MeLi and compared the NMR data with those reported in *ref.* 4b-d.
- This phenomenon has also been reported for the bulky *tert*.-butyl, the silyl and stannyl as well as for the 1,3-dithiolane-2-carboxylate group. For configurational and conformational aspects of 1-alkylated 3-uloses refer to *refs*. 3b, f, g and 5.
- 9 For the purpose of convenience the carbohydrate numbering is used for pyranones 6a,b-9a,b.
- Babiak, K. A.; Behling, J. R.; Dygos, J. H.; McLaughlin, K. T.; Ng, J. S.; Kalish, V. J.; Kramer,
 S. W.; Shone, R. L., J. Am. Chem. Soc. 1990, 112, 7441-7442.
- For a related synthesis of the side chain see: Nicolaou, K.C.; Stylianides, N.A.; Ramphal, J.Y., J. Chem. Soc., Perkin Trans. I, 1989, 2131-2132.
- Dess, D. B.; Martin, J. C., J. Am. Chem. Soc. 1991, 113, 7277-7287.
- 13 Corey, E.J.; Fuchs, P.L., *Tetrahedron Lett.* **1972**, 3769-3772.
- 14 Byun, H. S.; Bittman, R., Tetrahedron Lett. 1989, 30, 2751-2754.